Forest Service using drip torch for prescribed burning. Photo by George Wuerthner

There has been a spate of articles in various newspapers and magazines, asserting that if the Forest Service were following burning practices of Indigenous people, the massive wildfires we have seen around the West would be tamed.

Here are some representative of Indian burning will save the forest articles.

https://www.theguardian.com/us-news/2020/oct/23/karuk-tribe-california-slater-fire-insurance

https://www.vox.com/first-person/21517619/california-wildfires-indigenous-controlled-burns

https://www.wweek.com/news/2020/10/07/oregons-indigenous-communities-know-how-to-stop-megafires-will-the-state-let-them/?utm_campaign=2020-10-07+WildNews&utm_medium=email&utm_source=Pew

The October 7th, 2020 article Wildfires has ravaged the Western United States this year. Sending firefighting experts to Indigenous communities for guidance by Jim Cowan in the New York Times is typical of the erroneous assertions about Native American burning and its influence on large wildfires.

Long before California was California, Native Americans used fire to keep the lands where they lived healthy. That meant intentionally burning excess vegetation at regular intervals, during times of the year when the weather would keep blazes smaller and cooler than the destructive wildfires burning today.

And the Guardian article, like most of these recent publications, implies that the loss of native burning is contributing to large blazes: a century of practicing fire suppression over traditional tribal land stewardship has led to larger, more destructive wildfires.

The idea that tribal burning impacted the broad landscape is asserted by some scholars (Williams, G.W. 2004; Lightfoot, K.G. and R.Q. Cuthrell. 2015) but often with scant evidence to back up these claims except for oral traditions of Native people.

MAJOR ISSUES

MYTH OF INDIAN LANDSCAPE MANAGEMENT

As Barrett et al. 2005 noted: For many years, the importance of fire use by American Indians in altering North American ecosystems was underappreciated or ignored. Now, there seems to be an opposite trend. It is common now to read or hear statements to the effect that American Indians fired landscapes everywhere and all the time, so there is no such thing as a natural ecosystem. A myth of human manipulation everywhere in pre-Columbus America is replacing the equally erroneous myth of a pristine wilderness.

We believe that it is time to deflate the rapidly spreading myth that American Indians altered all landscapes by means of fire. In short, we believe that the case for landscape-level fire use by American Indians has been dramatically overstated and overextrapolated.

Noss et al. 2014 assert: Despite ample evidence that lightning fire was a primary ecological driver in the NACP [North American Coastal Plain], the myth persists that most fires before the arrival of Europeans were set by Native Americans. For example, Mann (2005; 361) provides a map that shows essentially the entire pre-Columbian NACP, including the lightning-riddled Gulf coast and Florida peninsula, as dominated by anthropogenic fire or with widespread forest clearing for agriculture. No evidence is offered to support these claims.

Most evidence for the widespread influence of indigenous burning is based on oral tradition, which is notoriously subject to variation of interpretation and misinterpretation.

DID INDIGENOUS BURNING PRECLUDE LARGE BLAZES?

The question is not whether Indian burning occurred, but rather to what extent it influenced the landscape as a whole and precluded large mixed to high severity blazes or what some people term mega fires. Is it a panacea for thwarting large blazes as implied? Furthermore, it needs into the notion that high severity blazes are somehow unnatural and ecologically destructive.

The Blow up or 1910 Burn that charred 3.5 million acres of Idaho and Montana occurred well before fire suppression led to fuel build-ups Photo George Wuerthner

The idea that fire suppression has led to some fuel build up in some plant communities is accurate, but fuel build-up is not the primary cause of sizeable high severity blazes. Most of these blazes are burning in plant communities like lodgepole pine, spruce/fire, juniper, and other plant communities that naturally had long intervals between fire events and naturally accumulate fuels. In other words, fuel build up in these plant communities is entirely natural.

There is ample evidence that Indian burning had little effect on large fires on the landscape. Except for some high-use areas, Indian burning did not significantly alter fuels across the broader landscape; more importantly, it did not preclude larger blazes.

Large mega fires have occurred for thousands of years, and Indigenous burning did not preclude them.

Plus, the idea that low severity fires dominated western landscapes ignores the fact that numerous species depend on the high-severity snag forests that result from sizeable high severity blazes. The second-highest biodiversity after old-growth forests is found in the snag forests and down wood that results from these blazes. These high severity habitats would simply not exist if such Indigenous burning were as successful as advocates suggest.

Indeed, the effectiveness of one hundred years of fire suppression can be questioned. For instance, in the early part of the 20th Century, as much as 50 million acres burned annually in the United States during several drought decades. https://www.nifc.gov/fireInfo/fireInfo_stats_totalFires.html

https://www.nifc.gov/fireInfo/fireInfo_statistics.html

LIVING WITH FIRE

Cultural burning was done for a variety of other purposes. To create favorable conditions for the growth of specific plant foods that might be favored by fire, create fresh new growth of grasses and other plants favored by wildlife like deer, elk, or bison. Fires were also used in warfare to burn out enemies that might be hiding in dense brush.

Just as today, wildfire was a natural force that influenced where people lived. One of the ways tribal people lived with fire was to locally reduce fuels to safeguard their villages, trading centers, and traditional gathering areas from large dangerous blazes.

This is the model that we should be promoting todayworking from home outward to reduce local flammability of homes and communities edge.

Since most tribal people lived in lower elevation landscapes like valley bottoms with grasslands or dry ponderosa pine forests where a wildfire was naturally more frequent, Indigenous burning likely favored the continued existence and expansion of these plant communities.

Ponderosa pine forests characteristically experienced low severity frequent fires that reduced ground fuels. Photo by George Wuerthner

It is important to note that these community types are often a small percentage of the landscape. For instance, dry montane forests (chiefly ponderosa pine) make up only 4% of western Montana and northern Idaho. http://www.northernrockiesfire.org/drymont.htm

However, the question remains as to whether this cultural burning was sufficient to change fire regimes across the broader landscape to the point it precluded larger wildfires.

While there is no doubt that Indigenous burning was widely practiced, the idea that cultural burning was a significant influence on landscape-scale fire influences is questionable.

There are multiple lines of evidence to suggest that Indian burning likely was local and did affect the broader landscape.

FUELS DONT DRIVE LARGE FIRES

Perhaps the biggest problem with the Indigenous burning will preclude large blazes is that it feeds into the narrative that fuels drive the massive fires we see around the West. The problem with this explanation is that large fires are climate-weather driven events-and have always been a consequence of climate-weather. There is abundant coloration between extensive drought and large landscape fires. Conversely, during periods of wet, cool climates, there are fewer large blazes.

If fuels were the primary driver of large blazes, we would expect large mega-fires along the Pacific Northwest coast where forest biomass is the greatest on the continent. Yet these coastal forests burn very infrequently-typically on 500-1000-year rotations due to the cool, moist climate.

Tom Butler hugs old growth Sitka spruce, Hoh River Valley Olympic National Park Washington. Photo by George Wuerthner

CLIMATE/WEATHER DRIVES LARGE BLAZES

If you have severe drought, low humidity, high temperatures, and, most importantly, wind, you get large landscape fires. If you do not have these weather/climate conditions, you get fewer ignitions, smaller fires that mostly self-extinguish.

The wind driving flames through vegetation during the 1988 fires that charred more than a million acres of Yellowstone National Park.

While Indian burning likely did influence fuel loading in some localized areas, it did not change the basic weather/climate ingredients that drive all large blazes (Whitlock, C et al. 2010).

Furthermore, you simply will not get large acreages to burn unless you have these extreme fire weather conditions.

First, most cultural burning, like the prescribed fires set today by state and federal agencies, was practiced in the spring and fall when fire spread was limited by moist fuels, high humidity, cool temperatures, and when winds are calm. High fuel moisture and cool temperatures limit fire spread. In other words, you will not burn much acreage. Under such conditions, most fires simply self-extinguish and are challenging to maintain.

Despite the implied notion in some of the above articles that somehow the Forest Service is ignorance of burning practices, this is the same reason federal and state agencies usually do prescribe burning during these seasons.

By contrast, all our larger landscape fires occur during extreme fire weather conditions, typically in the summer and early fall months. These include severe drought, low humidity, high temperatures, and, most importantly, wind.

Why is this important? Because most fires, even natural fires, are small. Unless you have these extreme fire weather conditions, 97-99% of all fires will burn 1-5 acres even if you dont suppress them. Whether the ignitions are from lightning or humans, if you dont have the right weather conditions, you will not burn a significant amount of the landscape.

For instance, 56,320 fires burned over 9 million acres in the Rocky Mountains between 1980-2003. 98% of these fires (55,220) burned less than 500 acres and accounted for 4% of the area burned. By contrast, only 2% of all fires accounted for 96% of the acreage burned. And 0.1% (50) of blazes were responsible for half of the acres charred. (Baker 2009 Fire Ecology in Rocky Mountain Landscapes).

In another example, between 1972 and 1987, Yellowstone National Park did not suppress backcountry fires. During this period, there were 235 blazes. Of these, 222 charred less than 5 acres and most burned less than 1 acre. And all 235 fires self-extinguished.

Then in 1988, more than a million acres burned in Yellowstone. Did fuels suddenly balloon overnight to sustain large high severity blazes? 1988 was the driest year on record since the park was established, with humidity as low as 1-2% and winds exceeding 50 mph.

Mosiac pattern of the 1988 wind-driven fire in Yellowstone National Park. Photo by George Wuerthner.

Thus, it would require setting thousands of these small fires when the climate/weather is not conducive for fire spread to burn any substantial amount of the landscape. So, the idea that Indian burning, which can be characterized as primarily low-severity frequent fires, was of sufficient size and scale to affect larger landscapes is questionable based on such ignitions timing.

Native people were wise enough to avoid purposely setting fires in the middle of extreme fire weather. Setting a blaze under conditions with variable high winds and drought was a recipe for disaster because it quickly leads to uncontrollable fires threatening villages and lives.

ECOLOGICAL EVIDENCE

Most of the Wests plant communities tend to naturally have long to very long fire rotations between fires, of many decades to hundreds of years in length. These communities include aspen, most fir species, mountain hemlock, western hemlock, west-side Douglas fir, chaparral, sagebrush, juniper-pinyon, lodgepole pine, white pine, western larch, and various spruce species.

Old-growth mountain hemlock forest which typically remains fire-free for hundreds of years between blazes.

This means wildfire historically did not burn in these communities except at infrequent intervals, almost always dictated by climate/weather.

During extreme weather conditions, the relative importance of fuels diminishes since all stands achieve the threshold required to permit crown fire development. Weather/climate is important since most of the area burned in subalpine forests has historically occurred during very extreme weather (i.e., drought coupled to high winds). The fire behavior relationships predicted in the models support the concept that forest fire behavior is determined primarily by weather variation among years rather than fuel variation associated with stand age (Bessie and Johnson 1995).

Many of these species have few adaptations to withstand frequent fires and would simply not exist if tribal burning affected them.

HISTORICAL EVIDENCE FOR LARGE BLAZES

Though most fire ecologists concede that native burning likely declined after European American settlement due to population decline resulting from disease, warfare, and displacement, there is plenty of evidence for large fires before large scale Euro American occupation.

For instance, in Oregons Willamette Valley, most large trees were established after large, high severity fires that occurred long before Euro-American influences on native populations. The 1865 Silverton Fire burned more than a million acres of the western Cascades. The 1853 Yaquina Fire burned nearly a half-million acres. Recent records from Washington estimate that a series of large fires in 1701 may have burned between 3 and 10 million acres in a single summer. To quote from a recent article on fires in Washington state: 1701 is given as the best estimate for the last devastating fire that occurred throughout Western Washington, a fire that burned an estimated 3 million to 10 million acres. At the upper end of that range, the area is roughly equal to 10 Olympic National Parks. (https://www.pugetsoundinstitute.org/2020/05/western-washington-wildfire-what-are-we-facing-this-year-and-beyond/).

Although individual accounts can vary, the observers detail can provide some hint of early accounts accuracy. For instance, David Douglas (for whom Douglas Fir is named) traveled from the Hudson Bay Post at Fort Vancouver down the Willamette Valley in 1826, carefully noting the vegetation. Douglas reported seeing burnt patches but indicated that most were small (Knox and Whitlock 2002).

Oak woodland in Willamette Valley, Oregon. Photo by George Wuerthner

Peter Skene Ogden noted extensive burns in the Blue Mountains of eastern Oregon and attributed it to natives. However, unless one actually observed Natives setting fires, it is difficult to know the source of ignition.

On the other hand, numerous travelers who kept meticulous notes like Lewis and Clark and John Fremont seldom mention encountering Indian burning. The absence of evidence is not the same as no evidence; nevertheless, when someone like Lewis and Clark or John Fremont fails to report extensive Indian burning, it does raise a cautionary note about interpreting historical accounts.

The other consideration is that Douglas, like most people traveling through the landscape, used the Indian trails and natural travel routes. Since human occupation is greatest in such areas, it may provide a biased view of the occurrence of human ignitions. Even today, the majority of wildfires occur near roads. Also, since most of these areas were dominated by grasslands and low elevation dry pines where fire is more frequent even today, it does not support the broader influence of human burning on the landscape.

FIRE STUDY TECHNIQUES GIVE A BETTER LANDSCAPE SCALE PICTURE OF FIRE

Beyond just historical accounts of fires, there is proxy evidence for past fire occurrence. Scientists use various methods to determine the fire history of any location.

The scientific evidence for historical fire regimes is based on a few different methods. Each method has its advantages and disadvantages (Whitlock et al. 2004).

The most common method for reconstructing fire history is fire scars, but other ways, including charcoal and pollen studies, among other techniques, result in different perspectives.

When a fire burns through an area at low severity (i.e., typically does not kill mature trees), it can leave a scar in the surviving trees. The scar eventually heals and is recorded in the tree rings. By examining tree rings, one can count the years between fires, and in some cases, even determine the season of the burn. This is the most popular method of determining fire histories.

Fire scar in ponderosa pine Oregon. Photo by George Wuerthner

There are, however, some problems with fire scar methods that some researchers believe results in an overestimation of fire frequency and influence (see Baker and Ehle 2001). For more detail on the problems of fire scar historical reconstructions, see (Wuerthner 2018) https://www.thewildlifenews.com/2018/07/14/fire-scar-historical-reconstructions-accurate-or-flawed/

There have been numerous studies that have looked at Indian burning and its influence on fire regimes. Most work done by fire ecologists who focus on large landscape fires do not find any additive impact from Indigenous burning. Instead, climate/weather appears to control periods of significant wildfire activity (Baker W.L. 2002).

In other words, they find evidence for more frequent fires during major droughts and in the immediate area of villages, along major travel corridors, trading centers, and other high use areas. Still, across the landscape as a whole, they do not find evidence that human ignitions were additive to total landscape acreage charred by wildfire.

In my view, the best way to document whether human ignitions were an important influence for landscape-scale fires is to use charcoal or pollen studies. But other techniques such as air photo, General Land Office (GLO) surveys, and even historical accounts of early Euro Americans can also provide insights.

Charcoal studies are a proxy for wildfires that rely on examining core drillings in lakes and ponds to extract sediments where charcoal from major wildfires are recorded. By reviewing such cores, researchers can document the larger wildfires in a landscape going back thousands of years. Charcoal studies tend to record the larger regional blazes.

Pollen from the same core samples also documents the primary vegetation present in surrounding lands.

For instance, Vachula et al. 2019 studied Yosemite National Park, where historically large Indigenous communities resided. Their research found a direct correlation between climate and the amount of burning on the landscape.

Yosemite Valley, smoke from fire, Yosemite NP, CA. Photo by George Wuerthner

We analyzed charcoal preserved in lake sediments from Yosemite National Park and spanning the last 1400 years to reconstruct local and regional area burned. Warm and dry climates promoted burning at both local and regional scales Regional area burned peaked during the Medieval Climate Anomaly and declined during the last millennium, as climate became cooler and wetter and Native American burning declined.

Our record indicates that (1) climate changes influenced burning at all spatial scales, (2) Native American influences appear to have been limited to local scales, but (3) high Miwok populations resulted in fire even during periods of climate conditions unfavorable to fires. However, at the regional scale (< 150 km from the lake), fire was generally controlled by the top-down influence of climate. (Vachula et al. 2019)

Another study in the Willamette Valley found that the mean fire interval in Oregons Coast Range was 230 years, and the presence of fire-sensitive species like Sitka spruce indicates a lack of frequent fire (Knox and Whitlock 2002).

Sitka spruce in Oregons Coast Range experience a mean fire interval of 230 years. Photo by George Wuerthner

Regarding Indigenous ignitions in the Willamette Valley, Whitlock notes: The idea that Native Americans burned from one end of the valley to the other is not supported by our data, says Whitlock. Most fires seem to have been fairly localized, and broad changes in fire activity seem to track large-scale variations in climate, she says. (Fire Science, 2010).

In another charcoal study of Washingtons Battle Ground Lake, Megan Walsh (Walsh et al. 2008) concluded that Fire frequency was highest during the middle Holocene when oak savanna and prairie were widespread near Battle Ground Lake. She suggests: The vegetation and fire conditions were most likely the result of warmer and drier conditions compared with the present, not from human use of fire (Fire Science 2010).

The authors (Walsh et al. 2008) concluded that wildfires were: mostly large or high-severity fire episodes. The fire history at Battle Ground Lake was driven by climate, directly through the length and severity of the fire season, and indirectly through climate-driven vegetation shifts, which affected available fuel biomass.

To give another example, one can show that Indian burning was more frequent in the Yosemite Valley where Indian people resided much of the year, but no evidence for wide-spread human burning in the majority of what is now Yosemite Valley or the Sierra Nevada Mountains as a whole (Vale 1998).

Hoffman et al. 2016 looked at Indian burning influence in coastal British Columbia and concluded: fires. At the decadal scale, fires were more likely to occur after positive El Nio-Southern Oscillation and Pacific Decadal Oscillation phases and exhibited 30-year periods of synchrony with the negative phase of the Arctic Oscillation. Fire frequency was significantly inversely correlated with the distance from former Indigenous habitation sites.

Though the Karuk and other tribes in northern Californias Siskiyou Mountains assert that their traditional burning precluded large fires, and that fire suppression of native burning practices contributed to the sizeable high severity blazes now burning the region. https://www.theguardian.com/us-news/2020/oct/23/karuk-tribe-california-slater-fire-insurance

Columbaroil and Gavin (2002) documented that large fires always occurred in the Siskiyou Mountains, primarily due to climate/weather, even during the pre-European period. Fire is a primary mode of natural disturbance in the forests of the Pacific Northwest. Increased fuel loads following fire suppression and the occurrence of several large and severe fires have led to the perception that in many areas, there is a greatly increased risk of high-severity fire compared with presettlement forests. To reconstruct the variability of the fire regime in the Siskiyou Mountains, Oregon, we analyzed a 10-m, 2,000-y sediment core for charcoal, pollen, and sedimentological data. The record reveals a highly episodic pattern of fire in which 77% of the 68 charcoal peaks before Euro-American settlement

High severity burns always occurred in the Siskiyou Mountains, despite Indigenous burning. Photo by George Wuerthner

Odion et al. (2004) (Conservation Biology), conducted in a 98,814-hectare area burned in 1987 in the California Klamath region, found that the most fire-suppressed forests in this area (areas that had not burned since at least 1920) burned at significantly lower severity levels, likely due to a reduction in combustible native shrubs as forests mature and canopy cover increases: The hypothesis that fire severity is greater where previous fire has been long absent was refuted by our studyThe amount of high-severity fire in long-unburned closed forests was the lowest of any proportion of the landscape and differed from that in the landscape as a whole (Z = -2.62, n = 66, p = 0.004).

View original post here:
Indigenous Burning: Myth and Realities - The Wildlife News

Related Posts
October 29, 2020 at 4:55 pm by Mr HomeBuilder
Category: Tree and Shrub Treatment